Detecting Mild Cognitive Impairment from Spontaneous Speech by Correlation-Based Phonetic Feature Selection

نویسندگان

  • Gábor Gosztolya
  • László Tóth
  • Tamás Grósz
  • Veronika Vincze
  • Ildikó Hoffmann
  • Gréta Szatlóczki
  • Magdolna Pákáski
  • János Kálmán
چکیده

Mild Cognitive Impairment (MCI), sometimes regarded as a prodromal stage of Alzheimer’s disease, is a mental disorder that is difficult to diagnose. Recent studies reported that MCI causes slight changes in the speech of the patient. Our previous studies showed that MCI can be efficiently classified by machine learning methods such as Support-Vector Machines and Random Forest, using features describing the amount of pause in the spontaneous speech of the subject. Furthermore, as hesitation is the most important indicator of MCI, we took special care when handling filled pauses, which usually correspond to hesitation. In contrast to our previous studies which employed manually constructed feature sets, we now employ (automatic) correlation-based feature selection methods to find the relevant feature subset for MCI classification. By analyzing the selected feature subsets we also show that features related to filled pauses are useful for MCI detection from speech samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic detection of mild cognitive impairment from spontaneous speech using ASR

Mild Cognitive Impairment (MCI), sometimes regarded as a prodromal stage of Alzheimer’s disease, is a mental disorder that is difficult to diagnose. However, recent studies reported that MCI causes slight changes in the speech of the patient. Our starting point here is a study that found acoustic correlates of MCI, but extracted the proposed features manually. Here, we automate the extraction o...

متن کامل

Detecting Mild Cognitive Impairment by Exploiting Linguistic Information from Transcripts

Here we seek to automatically identify Hungarian patients suffering from mild cognitive impairment (MCI) based on linguistic features collected from their speech transcripts. Our system uses machine learning techniques and is based on several linguistic features like characteristics of spontaneous speech as well as features exploiting morphological and syntactic parsing. Our results suggest tha...

متن کامل

Automatic identification of Mild Cognitive Impairment through the analysis of Italian spontaneous speech productions

This paper presents some preliminary results of the OPLON project. It aimed at identifying early linguistic symptoms of cognitive decline in the elderly. This pilot study was conducted on a corpus composed of spontaneous speech sample collected from 39 subjects, who underwent a neuropsychological screening for visuo-spatial abilities, memory, language, executive functions and attention. A rich ...

متن کامل

Running head: Non-Linear Dynamics Features for Detecting Sleepiness Applying Multiple Classifiers and Non-Linear Dynamics Features for Detecting Sleepiness from Speech

Comparing different novel feature sets and classifiers for speech processing based fatigue detectionis is the primary aim of this study. Thus, we conducted a within-subject partial sleep deprivation design (20.00 04.00 h, N = 77 participants) and recorded 372 speech samples of sustained vowel phonation. The self-report on the Karolinska Sleepiness Scale (KSS), and an observer report on the KSS,...

متن کامل

Applying multiple classifiers and non-linear dynamics features for detecting sleepiness from speech

Comparing different novel feature sets and classifiers for speech processing based fatigue detection is the primary aim of this study. Thus, we conducted a within-subject partial sleep deprivation design (20.00–04.00 h, N1⁄477 participants) and recorded 372 speech samples of sustained vowel phonation. The self-report on the Karolinska Sleepiness Scale (KSS) and an observer report on the KSS, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016